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Unsteady Potential and Viscous Flows
between Eccentric Cylinders

w.-G. Sim* and Y.C. Cho**
(Received July 18, 1992)

This paper presents a newly developed spectral collocation method for the study of the
unsteady annular flow between two eccentric cylinders. In order to predict the stability of a

system in a confined flow, the formulae and results of added mass and fluid damping are
provided in the present paper when a cylinder undergoes oscillatory motion in the plane of

symmetry and normal to the plane of symmetry in an eccentric annulus. The potential flow

theory has been developed to obtain the added mass for incompressible, inviscid and irrotational

fluid. For the viscous fluid, the added mass and the viscous damping are presented. This method
is validated by comparison with the available analytical solutions obtained for the unsteady

potential flow in the eccentric annular space. Excellent agreement was found between the
solutions obtained with the present spectral method and the available analytical solutions. In the

present study, the viscous effect on the added mass can be evaluated, comparing the results
obtained by potential flow theory with those obtained by the viscous flow theory, and viscous

damping is investigated.
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1 Introduction

Cylindrical structures subjected to annular flow

are widely used in many engineering construc­
tions; e. g., control rods in guide tubes of PWR­

reactors, feed water spargers in BWR-type reac­
tors, fuel-cluster stringers in AGR-type reactors,

tubes in the baffie regions of some kinds of heat
exchangers and certain types of valves and pis­

tons. For sufficiently high flow velocities, the
cylinders in such arrangements have often devel­

oped self-excited oscillations, sometimes severe

and occasionally destructive. For this reason,
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increasingly more effort has recently been devoted

to research in this area.
The dynamics and stability of a cylinder in

confined flow represents a coupled fluid-structure

interaction problem (Pa'idoussis and Ostoja­
Starzewski, 1981; Pa"fdoussis, et aI., 1990).

Hence, it is essential to formulate the hyd­

rodynamic forces associated with the motion of
the cylinder. In a linear analysis, the unsteady,

motion-related, fluid-dynamic forces may be con­
veniently separated into inertia, damping and

stiffness components. Therefore, it is a logical first

step to develop analytical tools which may be
used to predict the inertial added mass and damp­
ing forces in flow or just in quiescent fluid. As is
well-known, added mass, in phase with the
acceleration of the moving cylinder, and damp­
ing, in phase with its velocity, are dependent on
fluid parameters and system geometry. Studies of
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added mass can be traced to Stokes(l843) and a
brief survey was presented by Muga and Wil­

son(l970).
A considerable amount of work has been done

on the dynamics of a cylinder immersed in sta­
tionary confined VISCOUS or inviscid fluid.

Fritz(l972) developed a method for calculating

the inertial forces, in which an appropriate ideal
flow solution was proposed, and then generalized

forces were obtained via Lagrange's equations of
motion. The fluid-dynamic forces acting on oscil­

lating rods in stationary confined fluid have been
studied by potential flow theory (Au-Yang, 1976;

Chung and Chen, 1977) and by viscous theory

(Chen, et aI., 1976; Yeh and Chen, 1977; Matees­
cu, et aI., 1989) based on the linearized Navier­

Stokes equations of motion.
For narrow annular configurations, where the

viscous damping is specially important in station­
ary confined fluid, three-dimensional effects on

the hydrodynamic forces, considering the end
effect due to finite length annular region where

both ends of the annulus are open, have been

studied by Mulcahy(l980) using simplified Na­
vier-Stokes equations. The theory was formulated

for various viscous penetration depths (to be

defined later) in the narrow annular space. As the
ratio of length to radius of the inner cylinder is

decreased, this three-dimensional effect becomes

significant.
Because of the special interest in the dynamics

of systems involving eccentricities, sudden expan­

sions, contractions or diffuser sections (Mulcahy,
1980; Hobson and Jedwab, 1990), and because

even in the case of smooth concentric configura­
tions it would be of interest to provide more

accurate solutions for viscous flows than has
heretofore been possible, recourse to numerical
solution techniques had to be taken (Mateescu, et
aI., 1991). A comprehensive research effort in this
direction has been initiatied, aiming to eventually
obtain solutions for the dynamics of annular
configurations involving generally variable annu­
lar spaces and concentric or eccentric cylinders

oscillating in laminar or turbulent viscous flows.

This paper presents the first results of this

research and is concerned with the numerical

solutions for the steady and unsteady flows
between eccentric cylinders. Eccentricities may
actually appear in real engineering systems due to

several technical causes, such as manufacturing

and mounting errors, or deformations; the fluid­
elastic interaction may also represent an impor­

tant cause for eccentricities (eccentricities may
appear as a result of flow-induced divergence-type

instabilities or vibrations of the flexible or flexi­
bly-mounted centre-bodies in such systems). The

presence of an eccentricity in annular config­

urations considerably adds to the complexity of
the problem and, for this reason, very few accu­

rate analytical solutions were obtained, and this
only for simplified cases and geometries involving

eccentric cylinders.
The spectral method have first been applied to

the unsteady potential flow and then to the un­

steady viscous flow, generated by periodic trans­
lational motion of a cylinder in an eccentric
annulus. In the present analysis, the problem is

formulated based on the following assumptions:

(a) the flow is two dimensional with no axial flow
velocity and (b) the amplitude of the oscillatory

motion of the cylinder is small. Comparing the
results obtained by potential flow theory with

those obtained by the viscous flow theory, the

viscous effect on the added mass can be evaluated,
and viscous damping is investigated. The results

obtained by the potential flow theory will also be
used to validate the present spectral method ag­

ainst the available analytical solutions of Chung
and Chen( 1977) for eccentric configurations and

of Fritz(l972) for concentric configurations. To
have meaningful comparison with the available

solutions, the same considerations are used to
solve this unsteady problem with the spectral
collocation method.

2 General Considerations of the
Numerical Method of Solution

Since, eventually, the problem of self-excited
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cylinders.

In such two-dimensional flow problems, any
fluid-dynamic property, f, at any location in the

annular space between the eccentric cylinders
depends on the radial and circumferential (angu­
lar) coordinates rand 0, shown in Fig. I, and

eventually on the time. t, when the flow is un­
steady.

A convenient coordinate transformation is first
used to transform the annular space (r, 8) be­

tween the eccentric cylinders into a rectangular
computational domain (Z, 0), when: the nondi­
mensional coordinate Z is defined as:

motions of flexible bodies in fluid flow in such
geometries will have to be tackled, in which the
motion of the cylinder in time and space is not

known a priori, it is very important that the

numerical method utilized be as computationally
efficient and frugal (from both the memory re­
quirement and time points of view) as possible.

At the same time, the numerical method used for

the fluid-dynamic problem should be consistent
with modal analysis for the structural dynamics,

which would facilitate the fluid-elastic stability
analysis (a longer term goal) via a Galerkin-type

technique (Paldoussis, et aI., 1990). For these
reasons, a spectral collocation method was adopt­

ed for the fluid-dynamic problem: the unsteady
potential and viscous flows between two eccentric

r~a

Z=1~2---­
aldO) ,

in which

(I)

(a)

Z

-1
(b)

Fig. 1 Geometry of the annular space between two
eccentric cylinder: (a) physical plane (,., 8)
and (b) computational domain (Z. fj)

obtained by the coordinate transforma­
tions( I )

(3)exp(iwd),

a h(O) =Ro(O) -a=/ b2-e~;in2e

-ecosO~a, 0=8. (2)

In the above expressions a and b are the ratio of

the inner and outer cylinders, and e denotes the
eccentricity (e represents the relative eccentricity

with respect to the inner cylinder radius a)

In the present spectral method, the following

type of expansion is considered for any fluid­

dynamic property f in the two-dimensional an­
nular space

where Tj(Z) and F.(O) represent here Cheby­
shev polynomials and Fourier series functions,
respectively. The choice of Fourier series for the

interpolation functions in the circumferential

direction, F. (0), stems from the obvious periodic
character of the flow field with respe:ct to 0, and
allows a direct representation of the symmetry or
antisymmetry of the flow variables with respect to

the plane 0 =0 by using, accordingly, cosine or
sine functions of kO. No such periodic character
is obvious in the radial direction, hence the choice
of the Chebyshev polynominals, T

J
(Z), for the

corresponding interpolation function. The third
expansion using complex exponential functions of
time, which is introduced in Eq. (3) for the sake

-e

I

It-It
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of generality, is obviously needed only in the

unsteady flow case; as a result of this last expan­

sion, the governing equations can be decomposed

into N i sets of equations, each set corresponding

to a certain frequency Wi' which can be solved

serially.

The coefficients fjki of the flow variable expan­

sions in the form (3), which are a priori un­

known, have then to be determined from the

governing equations of the steady or unsteady

flow and the associated boundary conditions.

The present approach is based on collocation

method which imposes that the governing equa­

tions, as well as the boundary conditions, are

rigorously satisfied at a certain number of distinct

locations within the computational domain, say

Nz X No locations; implicitly, it is assumed that at

intermediate positions between the collocation

points the governing equations are satisfied wi­

thin a desired level of accuracy. The number of

collocation points in the radial and circumfer­

ential directions, Nz and No, should be carefully

selected to achieve the desired level of accuracy
and, at the same time, good computing efficiency.

3. The Unsteady Potential Flow
between Oscillating Eccentric

Cylinders

When the viscosity of fluid, 1.1, is very small or

the circular frequency of the motion of cylinder,

w, is very large, the penetration depth defined by

op =";21.11 W is very small. In this case, the fluid

flow can be assumed to be irrotatioal and invis­

cid. As mentioned before, the present spectral

method will be validated against the available

solutions (Chung and Chen, 1977; Fritz, 1972)

which is based on an incompressible potential

(inviscid) flow formulation.

3.1 Formulation of the basic equation
In this unsteady potential flow, the continuity

equation may be expressed in terms of the un­

steady velocity potential ¢ ( r, (J, t) and reduces

to the Laplace equation

Assuming that the moving cylinder undergoes a

harmonic oscillatory translation characterized by

the radian frequency w=2nf, the unsteady veloc­

ity potential can be expanded in the form

(5)

where the nondimensional coordinate Z is defin­

ed by coordinate transformation (1), and where

Tj(Z) represent the Chebyshev polynomials and

F. ((j) are Fourier series functions to be defined

further.

With this expansion of the potential, the veloc­

ity potential Eq. (4) becomes

m n [
~o~o I1Jjk AT;' (Z) F k ((J) +ETl (Z) F. ((j)

+CT;(Z)F~((j)+DTj(Z)F~'((J)J= 0,

(6)

where A, E, C and D are functions of Z and h
((j) defined by the following equations;

A = 1+D[ (1 - Z) h' ((J) 1h ((J) ]2,
E=B/lf+D(1- Z){h" (8) 1h(() ~2

[h' (8) 1h (8) ]2},
C=2D(1 ~Z) h'((j)1h((),
D={h(8)/[2+(1-Z)h(8)]P. (7)

To complete the problem formulation, we have

to add to the above governing equation the bo­

undary conditions on the moving and fixed cylin­

ders, which are expressed in terms of the radial

and circumferential velocity components, v and

W,

where

(4)
A o=2/[2+ (1- Z) h((J)],

Bo= -21h (8). ( 10)
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where

where

(21 )

(24)gl ( t) = a !J e iwt ,

It is obvious that in both cases whl:n the oscil­

latory translation of the moving cylinder axis
takes place in the plane of symmetry, the unsteady

flow in the eccentric annular space is symmetric

with respect to this plane 0 =0, and hence the
Fourier functions F k ( 0) used in the expansion (5)
of the velocity potential have to be defined as

~±<l'>jk[CO T/( -1) Fk(B) +Do Tj(-1)
j=Ok=O

Fk'(B)]=iw iJ sinel, (23)

where Co and Do have the same expressions given
inEq.(17).

Similarly, when the outer cylinder is fixed and

the inner cylinder axis has an oscillatory displace­
ment normal to the symmetry plane () =0,

goU) =a iJ e iwt , (22)

the boundary condition on the fixed inner cylin­
der in given by Eq. (15), while that on the moving

outer cylinder can be expressed as

m n
~ ~ <l'>jk[CoT/(-I) Fk(O) +DoTj (-1)
J=Ok=O

F/(B)]=(). (20)

The collocation method can be appilied now, as
described in Section 2, to the Eqs. (6) and (15),
(16), or (19), (20), which will reduce to an alge­

braic system of equations leading to the solutions

of the coefficients <l'>jk of the velocilty potential
expansion.

(b) Oscillatory motions normal to the plane
of symmetry(O=O). When the inner cylinder
is fixed and the outer cylinder axis executes an
oscillatory motion of translation perp,endicular to

the symmetry plane, B=0, defined by the dis­
placement

(15)

(II)IoU) =a 1 e,wt.

[v(r, O)]r~a=O. (12)

[v(r, B)cos(O-e)-w(r, 0)

sin(B-eo)]r=b= 1t°coseo.

( 13)

m n
~ ~ <l'>jk[ Co T/ ( -1) F k(0) +Do Tj (-1)

j::::Ok=O

F~ (B) ] = iw 1 cos eo, ( 16)

coseo=[I+h(O)] ~ cosO+ ~. (14)

(a) Oscillatory motions in the plane of
symmetry 0=0. Consider first the case when
the inner cylinder is fixed and the axis of the outer
cylinder executes an oscillatory translation in the

plane B=0 containing the axes of the two cylin­
ders, which will be referred to as the plane of

symmetry. With fort) denoting the oscillatory

displacement of the outer cylinder axis,

Co=Bocos(B-eo) +2Doh'(B)lh(B),
Do= -{I/[1 +h(O)]} sin(O- eo). (17)

If the outer cylinder is fixed and the inner

cylinder axis executes an oscillatory translation in

the symmetry plane 0=0 defined by the displace­

ment

the boundary conditions on the fixed and moving
cylinders can be expressed (considering the small

amplitude oscillation assumption) as

The above boundary conditions can be expressed

in terms of the Chebyshev polynomials and Four­
ier series func,ions by using the Eqs. (8) and (9),

in the form

(18)

the boundary conditions on the moving and fixed
cylinder, respectively, can be expressed in the

form

m n ~

Bo~ ~ <l'>jkTj'(l) F k(B) =iw I cosO,
j=Ok=D

(19)

the boundary condition on the fixed outer cylin­
der is given by Eq. (20), while that on the moving
inner cylinder can be expressed as

(25)

In both these cases, when the osciI:latory trans-
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p_ Po= - p[lt+l(lt)2 +l(l arP_)2J
at 2 ar 2 r aB '

(27)

where Po denotes the stagnation pressure in the
fluid (existing in the absence of any oscillatory

motion of cylinders). Assuming small amplitude
oscillations (in order to have a meaningful com­

parison with Chung and Chen's(l976) results),

the unsteady pressure can be expressed in simple
harmonic oscillation form,

0.75

Qoo

0.25 0.50
e
(a)

(b)

4
000

5

2.5

1.5

2.0

Ol)

6

The resultant unsteady force acting on the

moving cylinder can be obtained by integrating

the unsteady pressure along the circumference of
the cylinder. For example, the resultant unsteady
force per unit length acting on the inner cylinder

(26)F k (B) =sinkB.

lation of the moving cylinder axis is normal to the

plane B= 0, the unsteady flow in the eccentric
annular space cna be considered (when the oscil­

lation amplitude is small) antisymmetric with

respect to this plane B= 0; hence, in these case the
Fourier functions Fk (B) used in the velocity
potential expansion (5) have to be defined as sine

functions of kB,

The above boundary conditions together with
the governing Eq. (6) will also be reduced in these

cases to an algebraic system of equations, leading

to the solutions for the coefficients (J)jk of the

velocity potential expansion.

3.2 Unsteady pressure distribution and
resultant pressure force

With the cofficients (J)jk determined as indicat­
ed above. the entire flow field in the eccentric

annular space is also completely determined. The
-unsteady pressure may be calculated now in the

annular space from the Bernoulli-Lagrange equa­

tion

0.75

-QO{

1.0
0.00 0.25 0.50

e
(b)

Fig. 2 The added mass coefficients, all, aoo and aOl,
for oscillations in the plane of symmetry, as
functions on the relative eccentricity if: = e/( b
- a) for the cases: (a) bla= 1.25 and (b) bl
a=2. Comparison between the present solu­
tion( - ) and Chung and Chen's solu­
tion([]

(28)

where 1HZ, B) is a nondimensional reduced
pressure defined as

1 m n
p (Z, B) =-.-~ ~ (J)jk T j (Z) F k (B),

lWr:; j~Ok~O

(29)

and where r:;= j if the moving cylinder aXIs IS

oscillating in the plane of symmetry, or r:;= iJ if it

has oscillatory translations normal to the plane of
symmetry.



Unsteady Potential and Viscous Flows between Eccentric Cylinders 61

when its axis oscillates in the plane of symmetry

is calculated as

2.5

(300

The added mass coefficients, /3JI- /300 and /30/'

for oscillations normal to the symmetry
plane. as functions of the relative eccentricity
('=e/(b--a) for b/a=2

0.50 0.750.25

1.5<11-----E~_~
1.0

0.00

2.0

Fig. 3

Let au denote the nondimensional coefficient of

the resultant unsteady force acting on the cylinder

i when the cylinder j axis oscillates in the plane

of symmetry. with the convention that i and j are

I for the inner cylinder and 0 for the outer one,

which is defined in the form

au=2Fi(t)/[ lrpa/(rl+r})a I <"WI].

(31 )

where r/ = a and ro = b. Similarly, let Bu denote
the nondimensional unsteady force coetlicient of

the cylinder i when the cylinder j axis has an

oscillatory translation normal to the symmetry

plane,

Bu=2F,(t)/[ lrpw2(rl+r})a !J C'WI].

(32)

The nondimensional unsteady force coefficients

au (also known as the added mass coetlicients in

the analysis of the dylinder cynamics) calculated

with the present spectral collocation method as a

function of the relative eccentricity C are com­

pared in Fig. 2 with the results obtained by

Chung and Chen(l976).

The agreement between the present solution

and Chung and Chen's results is very good (for

the sake of this comparison, the same assumptions

as those made by Chung and Chen were also used

in the application of the present spectral colloca­

tion method).

The variation with the relative eccentricity eof

the nondimensional unsteady force coeffcients Bu
in the case of oscillatory translations normal to

the symmetry plane is shown for b/ a = 1.25 in

Fig. 3; one can notice that this variation is almost

identical with that of the coetlicients au in Fig.

2( a). although the corresponding resultant un-

1-- all / aIlFr 1 1 -_awl alO,_F'_' _

5.35% 4.39%
~-~-------- -

a m all -alO

~-l 4.3117 4.1457
---

5 : 5 4.5549 4.3355

7 4.5556 4.3360

b/

Table Variation of the calculated mass cofficients all and aro with the number of collocation points, m, and
their relative difference with respect to Fritz's( 1972) analytical results

========~===,=====--r- Comparison with Fritz's analytical[ results
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steady forces act in directions perpendicular to

each other.

The influence of the number of collocation

points on the accuracy of this spectral method is

shown in Table by comparison with the analyti­

cal results obtained for concentric configurations

(e =0) and small amplitude oscillations by Fritz

(1972). It was found that the rate of convergence

is faster in the case of the narrower annulus than

the wider one. Also the difference between the

numerical results and the analytical results app­

ears to decrease faster with an increasing number

of collocation points, m As a result, a slight

increase in number of terms m. taken in calcula­

tion is found to be needed for larger bla in order

to obtain the same accuracy. The agreement

between the numerical and analytical results is
very good.

4 Unsteady Viscous Flow between
Oscillating Eccentric Cylinders

Although for many engineering applications,

the viscosity is small and the fluid may be consid­

ered inviscid as a first approximation, near the

surface of cylinder there exists a thin layer of

rotational flow, associatied with the penetration

depth. This flow region, where the viscous effect

is signifIcant, is of great concern to the dynamic

response of the system for annular configurations.

In particular, when the annular gap is small, the

viscous effect becomes pronounced. Thus, it is of

interest to obtain the hydrodynamic force includ­

ing viscous effect.

The hydrodynamic forces acting on the inner

cylinder, due to the oscillatory motion of the

inner cylinder, will be obtained through line

integration of stresses and pressures around the

circumference of the cylinder. In general for this
problem, the resultant hydrodynamic forces have

simple harmonic forms, based on the assumption

of small amplitude oscillations, and are decom­

posed into two parts, one in phase with the

acceleration and the other with the velocity of the

motion.

4.1 Formulation of the basic equations
We consider the inner cylinder of the system,

surrounded by viscous but incompressible fluid,

and undergoing periodic translational motion in

an eccentric annulus. The motion of the inner

cylinder is assumed to be simple harmonic with

circular frequency, C!J and its amplitude small. For

this kind of two dimensional problem without

steady axial flow, it is possible to eliminate the

convective terms and the axial component terms

from the governing equations for unsteady fluid

flow. The linearized Navier-Stokes equations and

continuity equation in cylindrical coordinates can

be reduced to

(33)

(34)

where u* and w* denote the unsteady flow veloc­

ities in the radial and circumferential directions,

respectively.

Based on the no-slip condition at the interface

between fluid and cylinder, the boundary condi­

tions on the fixed (y = b) and moving (y = a)

cylinders can be expressed, in cases of oscillatory

motion (a) in the plane of symmetry and (b)

normal to the plane of symmetry, as

u* (b, EJ) = w* (b, EJ) =0,

u* (a, EJ) =ev cosEJ= ~~cosEJ,

w*(a, EJ)=-ev sinEJ=-1TsinEJ,

in case(a),

v* (a, EJ) =gv sinEJ=1TsinEJ,

w*(a, EJ) =gv cosEJ= ~~cosEJ,

in case(b), (35)

where ev and gv represent the lateral velocity of
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In this spectral method, the nondimensional

(39)

IV = f ±);J.jk Tj (Z) s (kBl,
j=Ok=O

m n
iJ=~~ VokTj(Z) c(kB) ,

j=Ok=O

m-2 n

p= ~ ~Pjk~(Z)C(kB),
j=O k=O

m n [
J~o(;o Wik AT;' (Z) s (kB) + BT; (Z) s (kB)

+ CT; (Z) s' (kBl +DTj (Z) s" (kB)

-DTj(Z)s(kB) -t ~'?s h2

T j (Z) s (kBl ]

[
, h'(8)+2 Vok T j (Z) c (kB) + (1- Z) 7l(7j)

T;(Z)c(kB) J+tPJk R{sh(B)!l5

[ T(Z) c'(kB) + (1_Z))z'(B)
J - h (B)

T;(Z)c(kB) ] =0,

fluid parameters can be expressed in terms of
Chebyshev polynomials and Fourier expansions,

as shown in the potential theory. By inspection of
the boundary conditions and considering the

properties of symmetry and antisymmetry of fluid
parameters with respect to the plane of symmetry
8 =,0, the fluid parameters can be (~xpressed only

in even terms (cosk@) or only in odd terms (sin
kB) of Fourier expansions, according to the

direction of the oscillatory motion of cylinder; in
case (a) or in case (b), as mentionl~d before.

(a) Oscillatory motions in the plane of sym­
metry, 8=0. Using the spectral expansion
for the oscillatory motion of the inner cylinder in

the plane of symmetry, the following types of

expansions can be considered [,:>r the fluid­

dynamic properties in two dimensional annular

space

where c(kB) and s(kB) stand for the even terms
cos kB and odd terms sin kB of the Fourier
expansions, respectively, and the unknown coeffi­

cients lV;k' Vok and Pjk are in complex forms due
to the viscosity.

Taking account of the expansion forms shown
in the above equations, the governing equations

and continuity equation can be expanded as

~ U,I*w=-----­
tan'cc,wt'

Hh=---,
a

p*

the vibrating inner cylinder in cases (a) and (b),

respectively, and c/ and g/ denote the correspond­
ing displacement of the moving cylinder.

In order to generalize the present problem, it is
convenient to define the following nondimen­
sional parameters

where e and {j denote the nondimensional am­
plitueds of the displacement of the inner cylinder
oscillating and c stands for them (c = j when the

inner cylinder has oscillatory motion in the plane

of symmetry, or c= {j when it has oscillatory
motion normal to the plane of symmetry), and Op
may be interpreted as the depth of penetration of

viscous wave regarded as a unsteady fluid layer.

Considering th:e coordinate transformation
with the above nondimensional parameter, it is

not difficult to reformulate the governing equa­
tions and continuity Eqs. (33) and (34) in the

computational domain (Z, B) as a nondimensio­
nal form

t R:s h2w -- t R
2
cs h.,l D L (Pl = [.11 ~~

aw a2u' a2w
+B az +C aZaB +D aB2

- D(w-2L( uJ) J.
Rcs h2 ~ _ Rcsh~=[A a

2
u + B a 17

t 4 v t 2 az az2 az

~~ ~- ]
+CaZ~B+D~a;-D(u-2L(w)) ,

(37)

~~ -!l5u-!l5L(w) =0, (38)

where the operator L(f) is
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subject to the boundary conditions

erties in the two-dimensional annular space by

inspection of the boundary conditions and the

properties of symmetry and anti symmetry of fluid

parameters:

in terms of unknown coefficients, ~k' V}k and

Pjk which are separated into real and imaginary

components.

Considering the above equations in expansion

form, the first of the two Navier-Stokes equations

can be written as

(43)

(45)

m n

{D=~~ WjkTj(Z)c(kfJ),
j=Ok=O

m n

i7=~~ V}kTj(Z)s(kfJ),
j=Ok=O

m-2 n

p= ~ ~PJkTj(Z)s(kfJ),
)=0 k=O

m n

~ ~ V}kTj(l)s(kfJ) =sinfJ,
j=Ok=O

m n

~ ~ ~k T j (1) c(kfJ) =sinfJ,
j=Ok=O

m n

~~ V}kT j (-1)s(kfJ) =0,
j=Ok=O

m n

~~ ~kT;(~1)s(kfJ)=O,
j=Ok=O

j~oi;:oWjk[ AT;' (Z) c (kfJ) +BT; (Z) c (kfJ)

+ CT; (Z) c' (kfJ) +DTj (Z) c" (kfJ)

~DTj (Z) c (kfJ) ~ ( R;s h2 T j (Z) c (kfJ) ]

+2V}k[ Tj(Z)s'(kfJ)+(1~Z)t((~l

T;'(Z) s (kfJ)] + t.F',k R
2
Cs h(fJ) Il5

[ T (Z) s (k(J) + (1- Z) h' ((J)
J h(fJ)

T;(Z)s(kfJ) ]=0, (44)

while the other Navier-Stokes equations and con­
tinuity equation are not given here for brevity.

Similarly to case (a), imposing the governing

equations and continuity equation on a certain

number of collocation points and considering the

boundary conditions, the discretized algebraic

equations can be obtained in closed form, to

determine the unknown coefficients, V}k' YVo'k and
Pjk . Considering the obtained coefficients, which

j~oi;:o V}k[AT;' (Z) c( kfJ) +BT; (Z) c( kfJ)

+ CT; (Z) c' (kfJ) +DTJ(Z) c" (kfJ)

~DTj (Z) c (kfJ) ~ (_~cs h2 T j (Z) c (kfJ) ]

-2Wjk[ T j (Z)s'(kfJ)+(1-Z) IU~l

T; (Z) s (kfJ) ] + (Pjk R;s h (fJ)

T;(Z)c(kfJ) =0, (40)

j~oi;:o V}k[ T; (Z) c(kfJ) -.jD T j (Z) c(kfJ) ]

-~Vik[ Tj(Z)s'(kfJ)+(1~Z) t((~l

T;(Z)s(kfJ)]=O, (41)

subject to the boundary conditions

m n

~ ~ Wjk Tj (~1) c (kfJ) =cosO, (42)
j=Ok=O

m n

~ ~ V}k T j (~1) c(kfJ) =cosO,
j=Ok=O

here ( )' and ( )" denote the first and second

order differentiations, respectively, with respect to

the concerned parameter; for example, T'=JT/

JZ and C"=J2C/J2fJ. In the present analysis, the

unknown coefficients can be determined by the

collocation method, whereby the governing equa­

tions and continuity equation are satisfied at a

certain number of distinct locations within the

computational domain, say (3m-I) X (n+1).

As a result, the discretized set of equations can be

obtained from the governing equation, in addi­

tion to the boundary conditions 2 X (n + 1).

Thus, the solutions of the algebraic system of (3m

+ 1) x (n + 1) equations can be obtained com­
pletely in the computational domain, which are

convertible back to the physical domain.

(b) Oscillatory motions normal to the plane
of symmetry e =0. In the spectral expansion

when the inner cylinder has oscillatory motion

normal to the plane of symmetry, while the outer

cylinder is fixed, the following type of expansions

can be considered for the fluid-dynamic prop-
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b/ i1

(al

2.0 I

I1.0 '------'---.---'--.----'

10.0 f
8.0

6.0 r.,'R(F)
4.0

~ -_.JT'>

and gl denote the displacements of the moving
cylinder in cases (a) and (b), respectively. From
Eq. (48), by definition, the added mass and damp­

ing coefficients can be written as

CM =m (F), cV =- plf(l2W0 (j.') ,

in case(a),

_ • avo
rrr - - p +2!l-a-'

l'

r rB = !l {lW-"-+ + ll£*-.}, (46)a1' l' l' ae
where the unsteady pressure and unsteady flow

velocities are determined in terms of Chebyshev
polynomials and Fourier expansions through the

spectral collocation method.

The resultant forces, acting on the inner cylin­
der per unit length, in the direction of oscillatory
motion can be calculated by circumferential inte­

gration of the stress components on the wall as

are the complex, the f1uid dynamic parameters in

the physical domain can be evaluated completely
by the coordinate transformations.

4.2 Shear stress and resultant viscous
forces

The hydrodynamic forces, which can be separ­
ated into self-added mass and viscous damping

terms, acting on the inner cylinder can be calcu­

lated by line integration of the stress components
including pressure. For the present analysis in

cylindrical coordinates, the stress component can
be rewritten as

where F I and G I stands for the cases (a) and (b).
respectively, and the stress components on the

surface of the inner cylinder can be expanded in
complex form. Thus the hydrodynamic forces can
be separated into real and imaginary components.
Substituting Eq. (46) into Eq. (47), these forces

can be expressed in the form

a2 ~
F/ = - plf(l2 CM-r/{.-£- - Cv oil

=Plf(l2Q/(lE:'eu"t[~)1(F) + (;-<,(F) l.
_ 2 ' a2

g l , a!lI
G/ - - plf(l Clf---;JY- (V 'aT

= plf(l2W 2aile,wt [~}l( C) + (~l (C) J. (48)

where CM and C li represent the added mass and
viscous damping coefficients, respectively, and e/

2

0.10

0.01

1.00

10.00

b/a
(b)

Fig. 4 The (a) real and (bJ imaginary components
of the nondimensional fluid-dynamic forces
versus the radius ratio, hi a, for the selected

oscillatory Reynolds number:L\, Res=50;
e, Res = 500 ; ,Res=5000

(47)cose) de,
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CM=ffi(G)' Cv=-p7ra2(JJ~<G),

in case(b). (49)
4.3 Numerical results for viscous fluid­

dynamic forces
To illustrate the influence of viscosity of the

fluid on added mass and the viscous damping for

the problem of harmonic oscillatory motion of

the inner cylinder in an eccentric annulus, the
calculations have been conducted while varying

the oscillatory Reynolds number, Res, the ratio of

radii, bla, and relative eccentricity, e I( b - a).

In these calculations, the collocation points (m

e
leo135

e
9045o

3

6

of-------'&-------l

-6 L-__...I-__-'-__----'__---'T

-3

- ~(p)

(a)

10.0 ,----...,-----,-----,-----, 30 r----.-------r---r----,

20

10

8.0

- ~(p)

6.0

4.0

0.0 .-__-'-__--1. '--__•
Ok----'-------'---.l.---~

o 45 90

e
135 leo

(b)

o 45 90

e
135 lao

Fig. 5 Influence of eccentricity on the nondimensional pressure, fj obtained by the present
potential (0, .) and viscous (6, .; Res= 50) theories in the case of bla= 1.25 for
oscillations; (a) in the plane of symmetry and (b) normal to the symmetry plane. Open
symbols, e=e/(b-a)=O; filled symbols, e =0.4
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-I) along the radial direction are clustered near

the wall to obtain good accuracy and computing
effciency, when the penetration depth is relatively

smaIl vis-a-vis the annular space, 6'pi(b ~- a) <0.1.
In other cases, the calculations have been con­

ducted with equaIly distributed collocation points
along the radial direction. Along the circumferen-

tial direction, equaIly distributed collocation

points (n + I) are selected, but with F k ( 8) *0 to
avoid the pseudo-singularity problem.

When Res is 50, 500 and 5000, and bla is
varied from 1.25 to 4, the added mass and viscous

damping coefficients for concentric configura­
tions are shown in Fig. 4. It is found that the

0.500.250.00

10.00

1.001_---A--_-A-____o:..---A--"f
~ £:> £:> A

,J----.L-_----J
0.500.25

-
'" ~

-'
~

--..

I1.0
0.00

4.0

2.0

B.O

8.0

10.0

(a)

10.0

8.0

6.0 10.00

~(G) I -8'(6)
4.0 -j

\

1.00

2.0

~ ~ -

~...

0.500.25
0.10

0.000.500.25

1.0 L- -'- ---J

• 0.00

(b)

Fig. 6 Influence of the relative eccentricity e =e/ (b - a) on the nondimensional fluid-dynamic
forces considering full viscous effects for oscillations; (a) in the plane symmetry and
(b) normal to the symmetry plane. - 0 -, Res=50 and b/ a= 1.25; -. -, Res=50
and b/a=2;-.6-, Res = 5000 and b/a=1.25
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coefficients are strongly dependent on the oscil­

latory Reynolds number; as it increases, these

coefficients decrease. Physically, for fixed values

of the ratio of radii, bI a, and the viscosity of

fluid, )) these coeffcients decrease with increasing

the frequency of oscillatory motion, w. The two

coefficients exponentially increase with decreas­

ing bl a for the fixed oscillatory Reynolds num­

ber. Particularly for narrow annular flow, it is

necessary to take into account the viscous damp­

ing, even if the oscillatory Reynolds number is

high, corresponding to the case of low viscosity

fluid or high circular frequency. With increasing

the value of oscillatory Reynolds number, the

added mass coefficients is less influenced by

viscosity of fluid. and not too different from the

result obtained by the potential flow theory.

The influence of the relative eccentricity on the

nondimensional pressure in complex form is illus­

trated in Fig. 5(a) for bl a= 1.25 and Rcs=50 in
the case of oscillatory motion in the plane of

symmetry and in Fig. 5(b) in the case of oscil­

latory motion normal to the plane of symmetry.

The real part of it, which is related to the added

mass, is compared with the result (open circles for

concentric configurations and filled circles for

eccentric ones c/(b-a)=O.4) for potential flow.

The character of the variation of Ul( 15) and 0( 15)
with the eccentricity is similar to that for potential

flow.

The added mass and viscous damping coeffi­

cients are shown in Fig. 6(a) for the oscillatory

motion in the plane of symmetry and Fig. 6(b) for

the motion normal to the plane of symmetry. The

relative eccentricity, c I( b - a), effect on the coef­

ficients is investigated with the selected oscillatory

Reynold number (Rc s =50. 5000) and the ratio of

radii (hi a= 1.25, 2). The numerical results have

been calculated with In < 6 and n < 6 in case of

Res=50 and with m< 10 and JI<4 in case of Res
=5000. in order to minimize the round-off error

which may increase with the size of the matrix

obtained from the algebraic equations. In general,

it is necessary to increase the terms in the Fourier

expansion with increasing eccentricity, and of

Chebyshev polynomials with increasing of the

annular space. As the eccentricity increases, the

magnitude of these coefficients increases and, due

to the viscosity. the added mass coefficients in­

crease as the oscillatory Reynolds number de­

creases.

5 Conclusions

A newly developed spectral collocation method

is presented in this paper for the study of unsteady

potential and viscous flows between fixed and

oscillatory cylinders eccentrically positioned.

The spectral method is applied in this paper to

the unsteady potential and viscous flows, generat­

ed by the harmonic translational motion of cylin­

der in an annulus based on small amplitude

motion. The numerical results are presented to

evaluate the general characteristics of the added

masses for both flows and the viscous damping

for viscous flow in terms of the radius ratio bI a
with the eccentricity c I( b - a). For viscous flow,

the oscillatory Reynolds number Res is an impor­

tant parameter, as shown in Eq. (37).

To assess the val idity of the results for potential

flow. the present results are compared with the

analytical results given by Chung and Chen

(1977) for eccentric configurations and by Fritz

( 1972) for concentric ones. Excellent agreement

was found in both cases between the solution

obtained with the present spectral method and the

available analytical solutions. One can conclude

that the present spectral collocation method has

been validated by these comparisons, and we can

safely proceed further to use it for solving more

complicated unsteady flow problems, which re­

main unsolved at present. The numerical results

for both potential and viscous flows are compar­

ed. The difference between the two sets of results

can be explained by the viscous effects caused by

the shear stress and the unsteady pressure drop in

circumferential direction.

Considering the results obtained by potential

and viscous flow theories for translational motion
of the inner cylinder in an annulus, the following
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remarks should be made: (a) the present colloca­
tion method has been validated by comparison
with the analytical ones. Therefore, this method

can be adapted for use in more complicated
unsteady flow problems, which remain unsolved
at present; (b) the linear theory presented in this

analysis is based on the assumption of small

oscillatory amplitudes (as a result, the added mass
and viscous damping coefficients are independent
of the amplitude); (c) the added mass and viscous

damping coefficients are dependent of the oscil­
latory Reynolds number, and these coefficients

are influenced by the relative eccentricity; with
decreasing oscillatory Reynolds number and in­

creasing the eccentricty, these coefficients in­
crease; (d) for the high oscillatory Reynolds

number, the added mass coefficients can be esti­

mated approximately by potential flow theory,
but the viscous damping coefficients, even for

high oscillatory Reynolds number, should be

considered in the hydrodynamic forces for narrow
annuli; (e) for narrow configurations, the added

mass is insensitive to variations of the oscillatory

Reynolds number; however, the damping is sen­

sitive to it.
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